

Efficient high-dimensional variational data assimilation with machine-learned reduced-order models

Eliot Kim

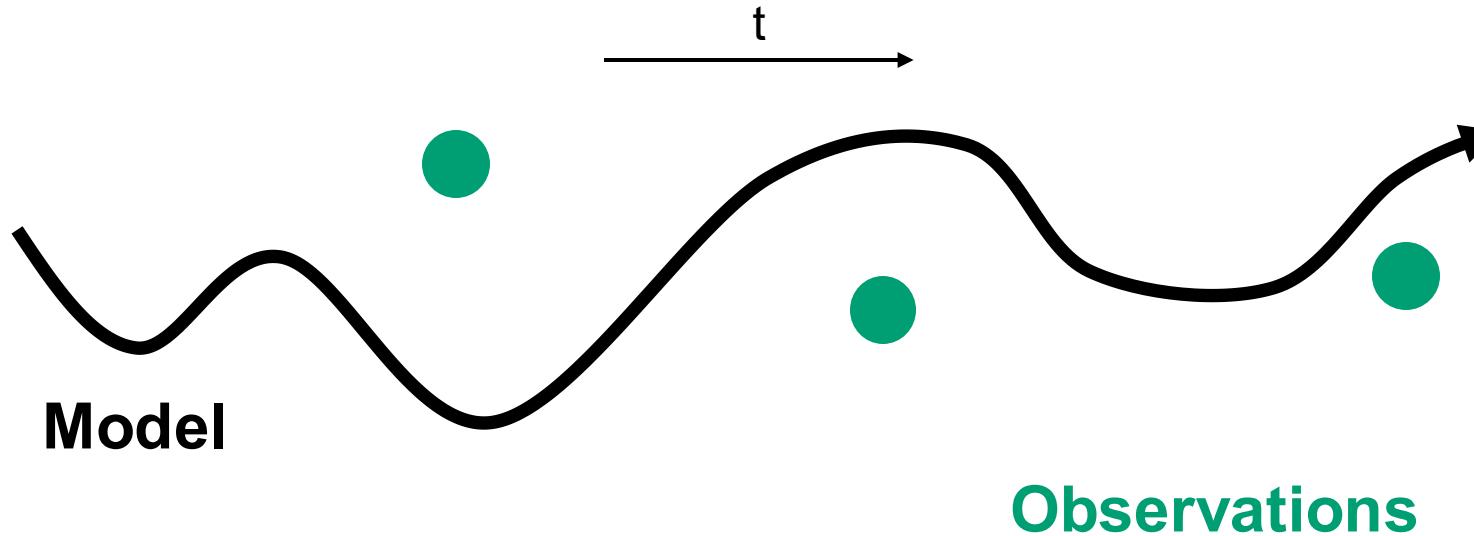
Machine Learning Journal Club

Presenting Maulik et al. 2022

December 5th, 2025

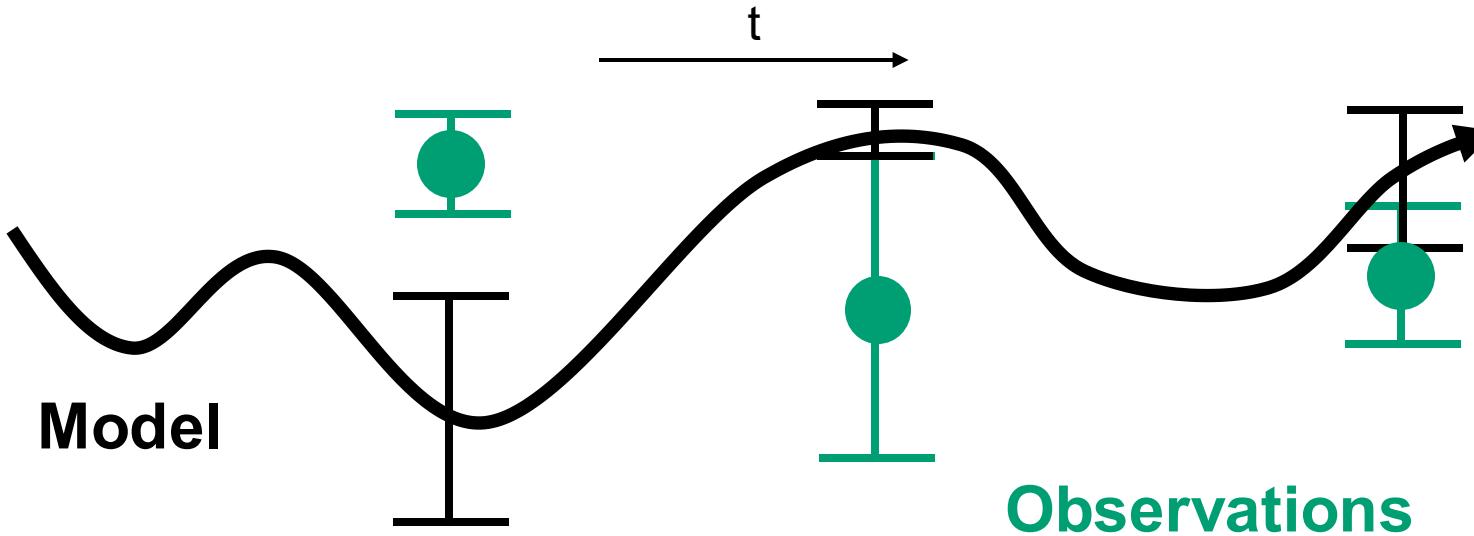
** Fill out the when2meet for Winter Quarter :] **

What is “data assimilation”?



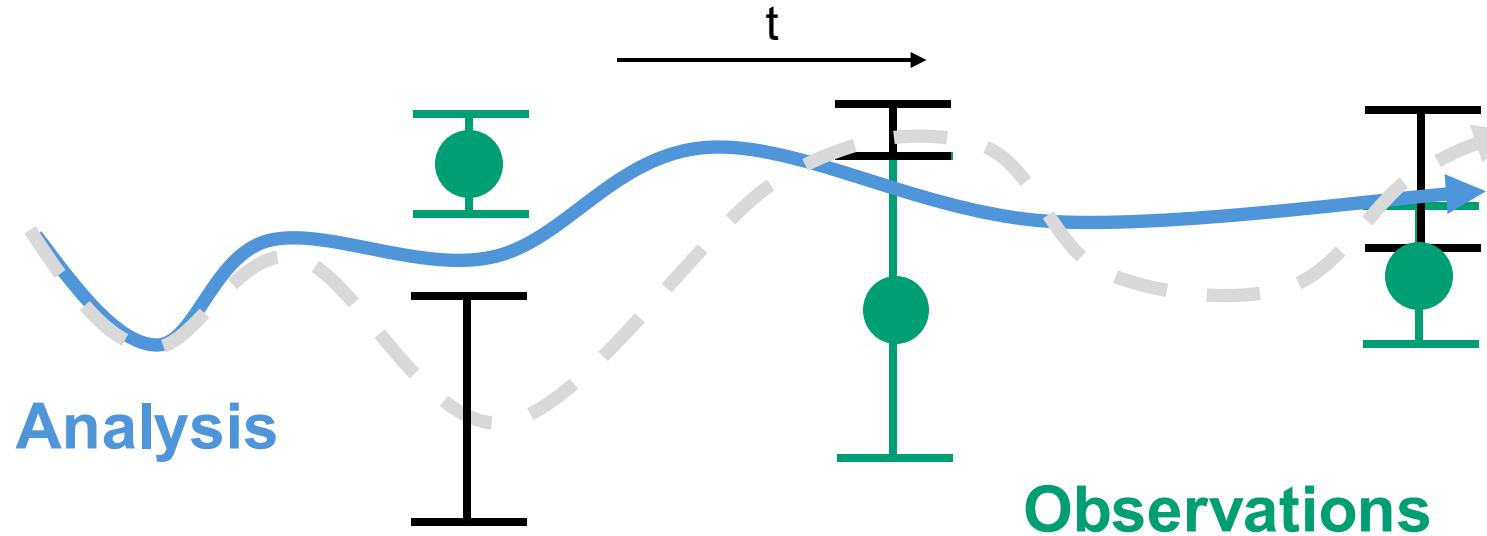
Given **model estimates** and **observations**, what is the most likely atmospheric state?

What is “data assimilation”?



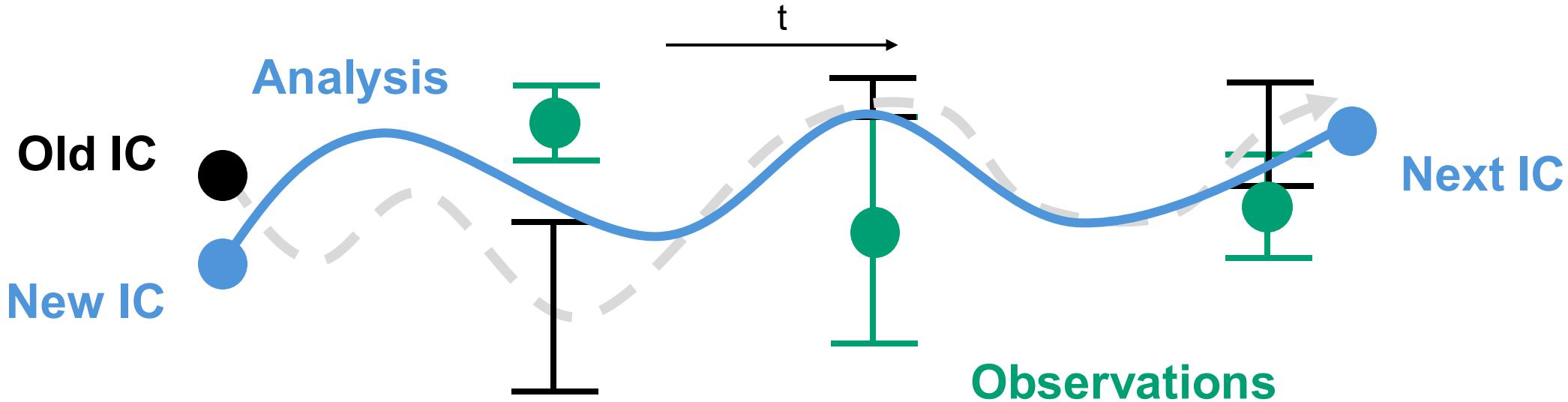
Both model estimates and observations have **errors**

What is “data assimilation”?



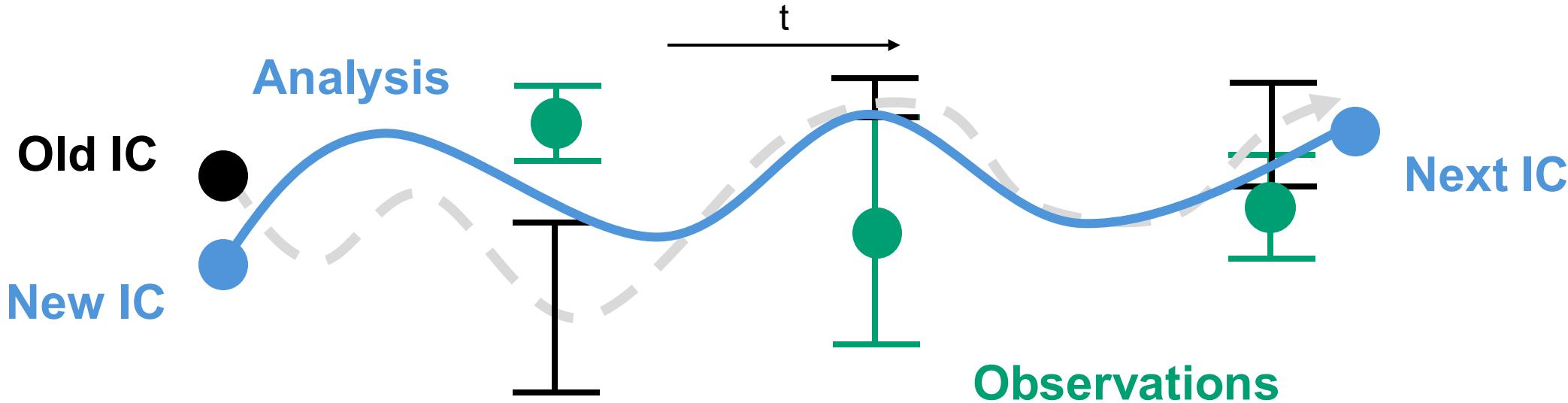
Final **analysis** is determined by error-weighted contributions from observations and model states

Applications of Data Assimilation



- Real-time Forecasting: Optimizing initial conditions
 - Ex: Operational weather forecasts @ ECMWF, Met Office, NCEP, etc.

Applications of Data Assimilation

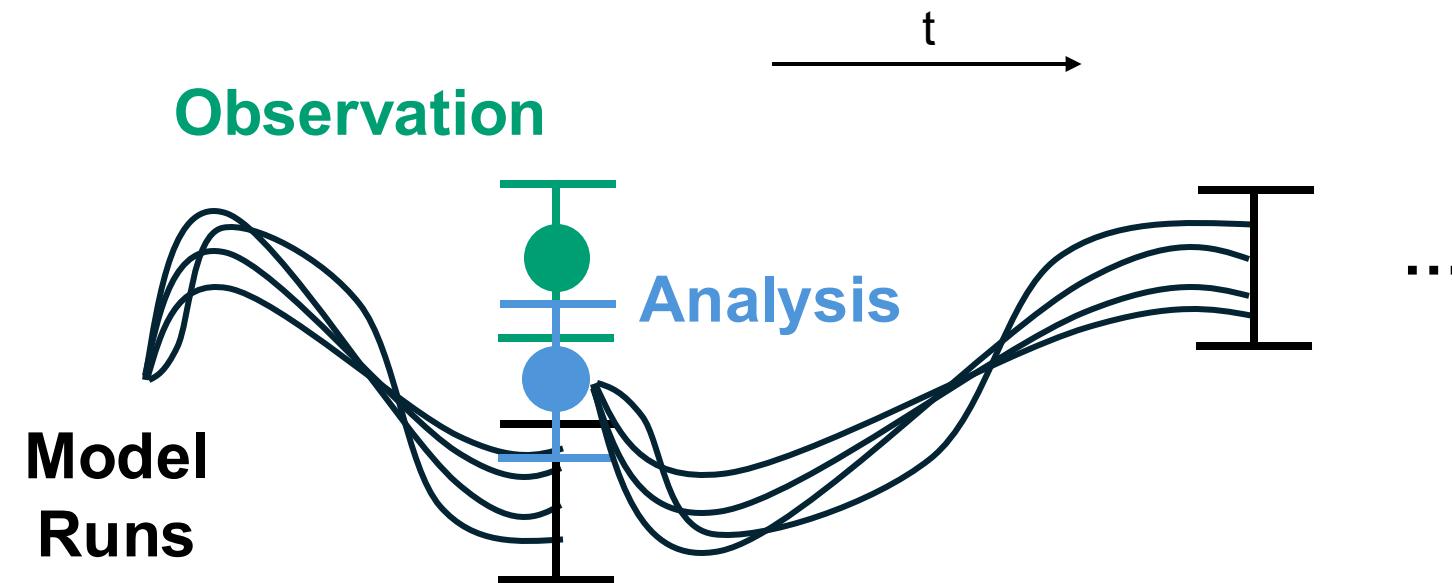


- Real-time Forecasting: Optimizing initial conditions
 - Ex: Operational weather forecasts @ ECMWF, Met Office, NCEP, etc.
- Re-analyses: Re-constructing best estimate of prior atmospheric state
 - Ex: **ERA5** for weather and climate
 - Ex: **CAMS** for atmospheric composition

DA State-of-the-art

Ensemble Kalman Filters (EnKF)

Run a large ensemble of models to compute model error at each time-step

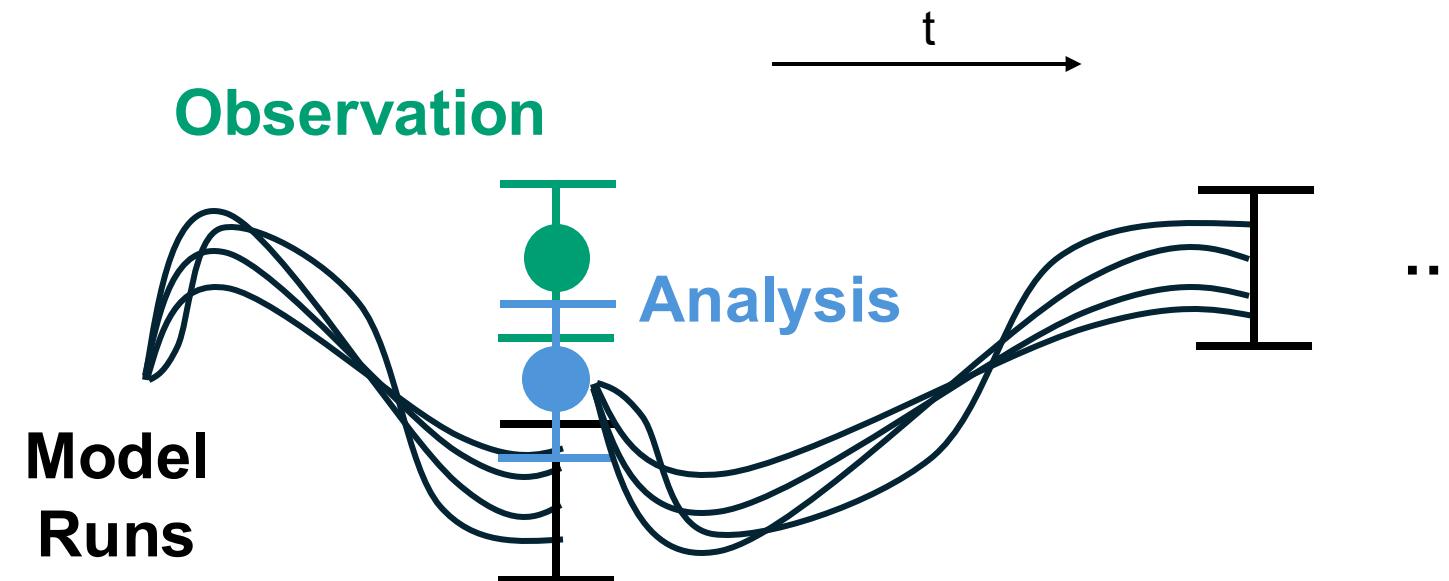


DA State-of-the-art

Ensemble Kalman Filters (EnKF)

Run a large ensemble of models to compute model error at each time-step

- + Model error updated during assimilation
- + Easy to implement
- Requires 10-100s of expensive model runs
- Outputs discrete analysis trajectory



DA State-of-the-art

Ensemble Kalman Filters (EnKF)

Run a large ensemble of models to compute model error at each time-step

4D Variational DA (4D-Var)

Determine initial model state which gives best fits to observations in **assim. window***

*3D-Var collapses observations to time of IC

DA State-of-the-art

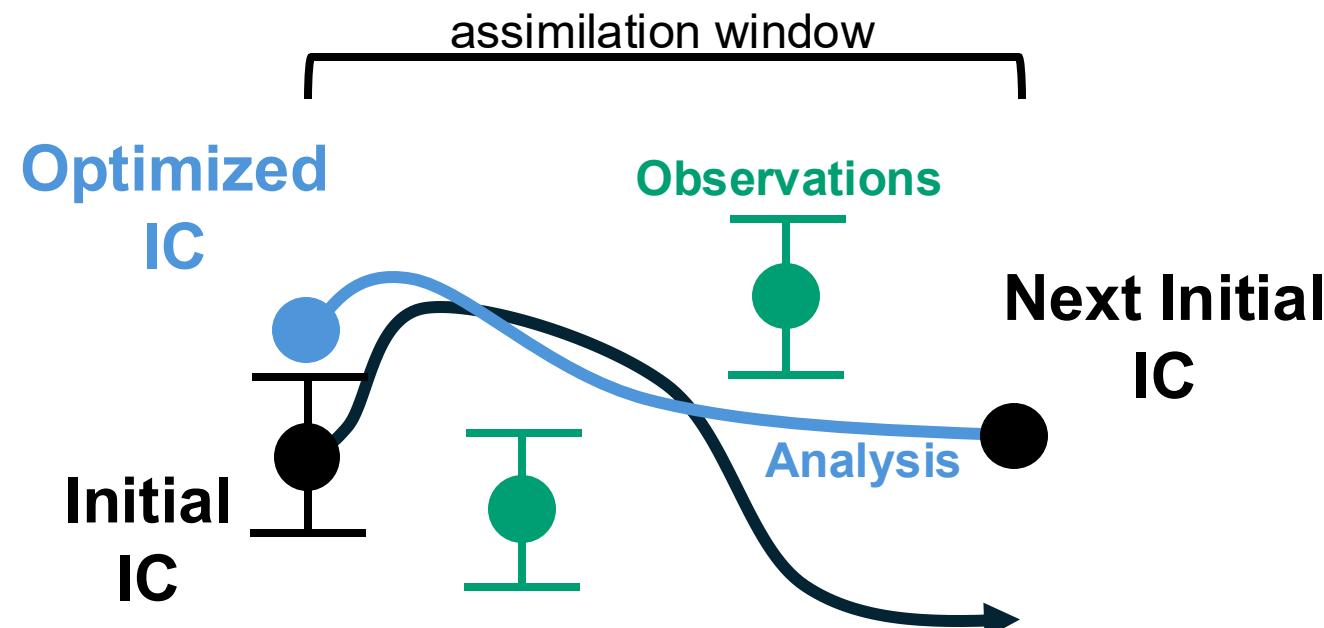
Ensemble Kalman Filters (EnKF)

Run a large ensemble of models to compute model error at each time-step

4D Variational DA (4D-Var)

Determine initial model state which gives best fits to observations in **assim. window***

*3D-Var collapses observations to time of IC



DA State-of-the-art

Ensemble Kalman Filters (EnKF)

Run a large ensemble of models to compute model error at each time-step

4D Variational DA (4D-Var)

Determine initial model state which gives best fits to observations in assim. window

- + Outputs continuous analysis trajectory which obeys model physics
- Requires backwards model gradients during optimization (expensive!)

DA State-of-the-art

Ensemble Kalman Filters (EnKF)

Run a large ensemble of models to compute model error at each time-step

4D Variational DA (4D-Var)

Determine initial model state which gives best fits to observations in assim. window

- + Outputs continuous analysis trajectory which obeys model physics
- Requires backwards model gradients during optimization (expensive!)

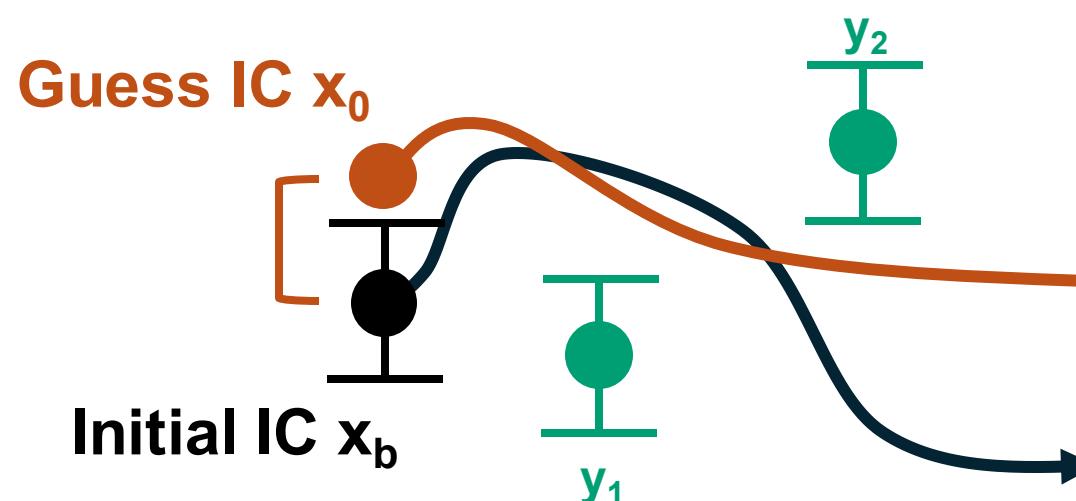
**** 4D-Var is SOTA, used by ECMWF for IFS and ERA5! ****

4D-Var Cost Function

Goal: Determine the model state x_a which minimizes cost function J

$$J(x_0) = \frac{1}{2}(x_0 - x_b)^T B_0^{-1} (x_0 - x_b) + \frac{1}{2} \sum_{i=0}^n [H_i(x_i) - y_i^o]^T R_i^{-1} [H_i(x_i) - y_i^o]$$

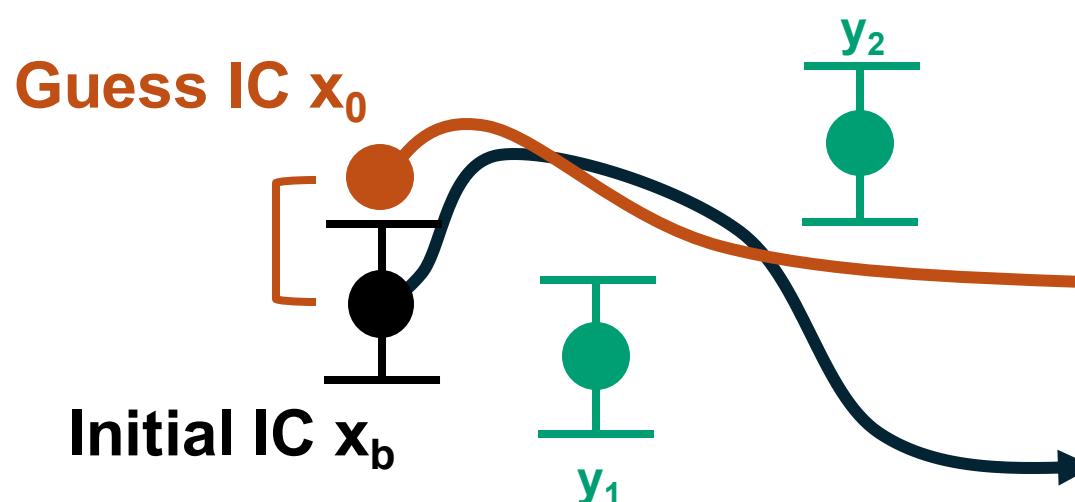
Model Error Term



4D-Var Cost Function

Goal: Determine the model state x_a which minimizes cost function J

$$J(x_0) = \frac{1}{2} \underbrace{(x_0 - x_b)^T B_0^{-1} (x_0 - x_b)}_{\text{Departure from initial guess}} + \frac{1}{2} \sum_{i=0}^n [H_i(x_i) - y_i^o]^T R_i^{-1} [H_i(x_i) - y_i^o]$$



4D-Var Cost Function

Goal: Determine the model state x_a which minimizes cost function J

$$J(x_0) = \frac{1}{2} (x_0 - x_b)^T B_0^{-1} (x_0 - x_b) + \frac{1}{2} \sum_{i=0}^n [H_i(x_i) - y_i^o]^T R_i^{-1} [H_i(x_i) - y_i^o]$$

Model Error Covariance Matrix

(spreads model departures between
variables and across time and space)

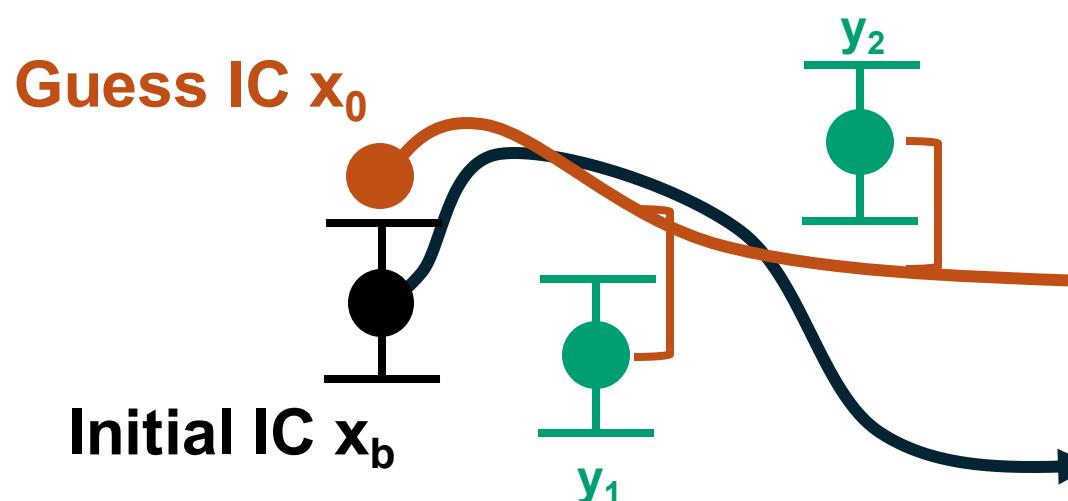


4D-Var Cost Function

Goal: Determine the model state x_a which minimizes cost function J

$$J(x_0) = \frac{1}{2}(x_0 - x_b)^T B_0^{-1} (x_0 - x_b) + \frac{1}{2} \sum_{i=0}^n [H_i(x_i) - y_i^o]^T R_i^{-1} [H_i(x_i) - y_i^o]$$

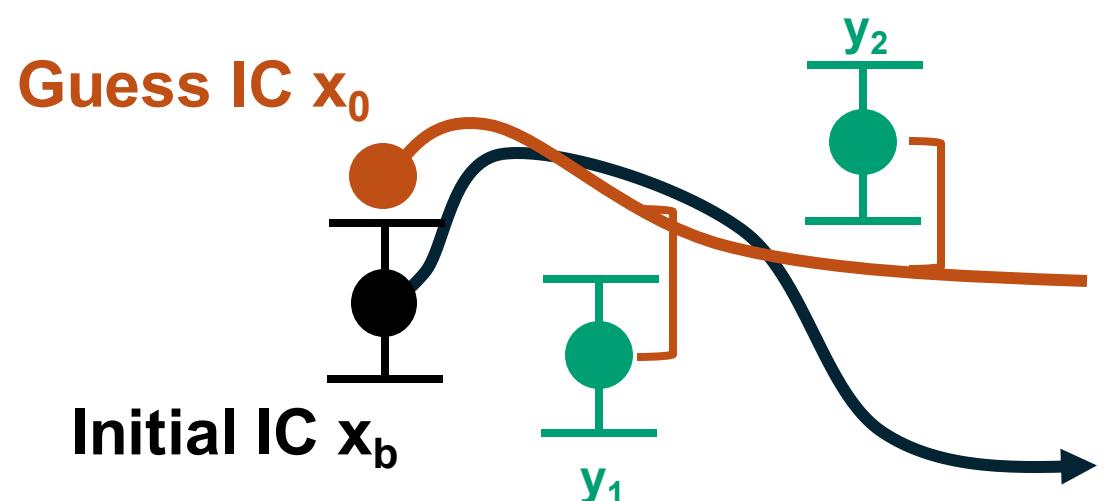
Observation Error Term



4D-Var Cost Function

Goal: Determine the model state x_a which minimizes cost function J

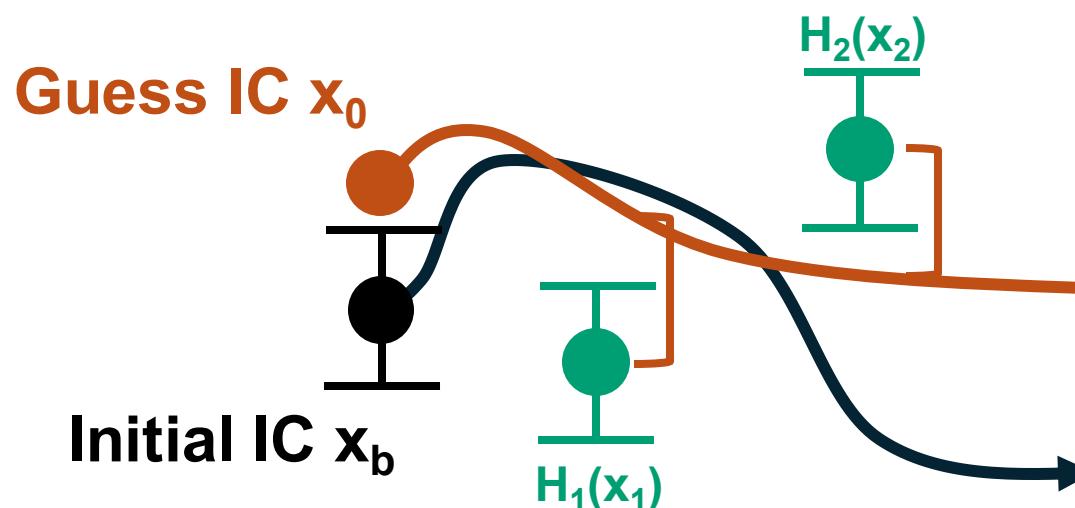
$$J(x_0) = \frac{1}{2}(x_0 - x_b)^T B_0^{-1} (x_0 - x_b) + \frac{1}{2} \sum_{i=0}^n \underbrace{[H_i(x_i) - y_i^o]^T R_i^{-1} [H_i(x_i) - y_i^o]}_{\text{Departure from observation}}$$



4D-Var Cost Function

Goal: Determine the model state x_a which minimizes cost function J

$$J(x_0) = \frac{1}{2}(x_0 - x_b)^T B_0^{-1} (x_0 - x_b) + \frac{1}{2} \sum_{i=0}^n \underbrace{[H_i(x_i) - y_i^o]^T R_i^{-1} [H_i(x_i) - y_i^o]}_{\text{“Observation Operator”}} \quad (\text{interpolate + transform model state to observation space})$$

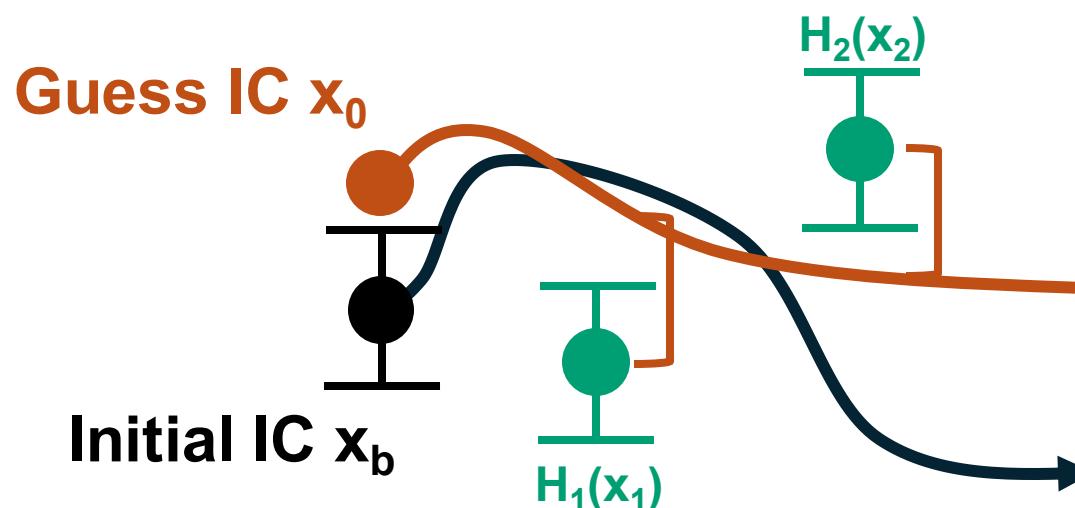


4D-Var Cost Function

Goal: Determine the model state x_a which minimizes cost function J

$$J(x_0) = \frac{1}{2}(x_0 - x_b)^T B_0^{-1} (x_0 - x_b) + \frac{1}{2} \sum_{i=0}^n [H_i(x_i) - y_i^o]^T R_i^{-1} [H_i(x_i) - y_i^o]$$

Observation Error Covariance Matrix
(spreads observation departures between variables and across time and space)

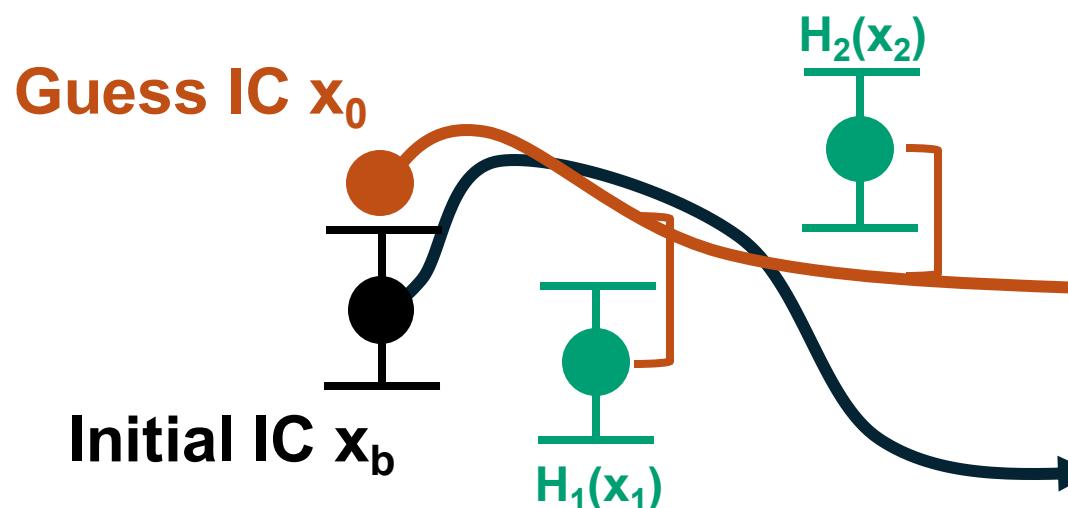


4D-Var Cost Function

Goal: Determine the model state x_a which minimizes cost function J

$$J(x_0) = \frac{1}{2}(x_0 - x_b)^T B_0^{-1}(x_0 - x_b) + \frac{1}{2} \sum_{i=0}^n [H_i(x_i) - y_i^o]^T R_i^{-1} [H_i(x_i) - y_i^o]$$

Sum of observation errors across
assimilation window



4D-Var Algorithm

Minimize
$$J(x_0) = \frac{1}{2}(x_0 - x_b)^T B_0^{-1}(x_0 - x_b) + \frac{1}{2} \sum_{i=0}^n [H_i(x_i) - y_i^o]^T R_i^{-1} [H_i(x_i) - y_i^o]$$

→ Goal: Find x_0 for which $dJ/dx_0 \sim 0$

$$\nabla J_{x_0} = -B_0^{-1}(x_0 - x_b) - \sum_{i=0}^n \underbrace{M_{dt}^T \dots M_{t-dt}^T M_t^T H_i^T(x_i) R_i^{-1} (y(i) - H_i(x_i))}_{\text{Adjoint: Backwards gradients of model state at time } t \text{ w.r.t model state at time } t-dt}$$

Adjoint: Backwards gradients of model state at time t w.r.t model state at time $t-dt$

Why is 4D-Var so dang expensive?

Minimize
$$J(x_0) = \frac{1}{2}(x_0 - x_b)^T B_0^{-1}(x_0 - x_b) + \frac{1}{2} \sum_{i=0}^n [H_i(x_i) - y_i^o]^T R_i^{-1} [H_i(x_i) - y_i^o]$$

→ Goal: Find x_0 for which $dJ/dx_0 \sim 0$

$$\nabla J_{x_0} = -B_0^{-1}(x_0 - x_b) - \sum_{i=0}^n M_{dt}^T \dots M_{t-dt}^T M_t^T H_i^T(x_i) R_i^{-1} (y(i) - H_i(x_i))$$

😱 B_0 is huge: If $x_0 \sim 10^6$, $B_0 \sim 10^{12}$

😭 H must be computed for each new observational product

🤯 ⚡ M^T must be derived for each numerical model

Why is 4D-Var so dang expensive?

Minimize
$$J(x_0) = \frac{1}{2}(x_0 - x_b)^T B_0^{-1}(x_0 - x_b) + \frac{1}{2} \sum_{i=0}^n [H_i(x_i) - y_i^o]^T R_i^{-1} [H_i(x_i) - y_i^o]$$

→ Goal: Find x_0 for which $dJ/dx_0 \sim 0$

$$\nabla J_{x_0} = -B_0^{-1}(x_0 - x_b) - \sum_{i=0}^n M_{dt}^T \dots M_{t-dt}^T M_t^T H_i^T(x_i) R_i^{-1} (y(i) - H_i(x_i))$$

😭 B_0 is huge: If $x_0 \sim 10^6$, $B_0 \sim 10^{12}$

😤 H must be constructed for each new observational product

😴 💫 M^T must be derived for each numerical model

🤑🤑🤑 ~100 iterations are needed to optimize x_0 for each assimilation step

$$\nabla J_{x_0} = -B_0^{-1}(x_0 - x_b) - \sum_{i=0}^n M_{dt}^T \dots M_{t-dt}^T M_t^T H_i^T(x_i) R_i^{-1}(y(i) - H_i(x_i))$$

Adjoint: Backwards gradients of model
state at time t w.r.t model state at time $t-dt$

Goal: Reduce burden of \mathbf{M}^T and \mathbf{B} using fast emulator and dimensionality reduction

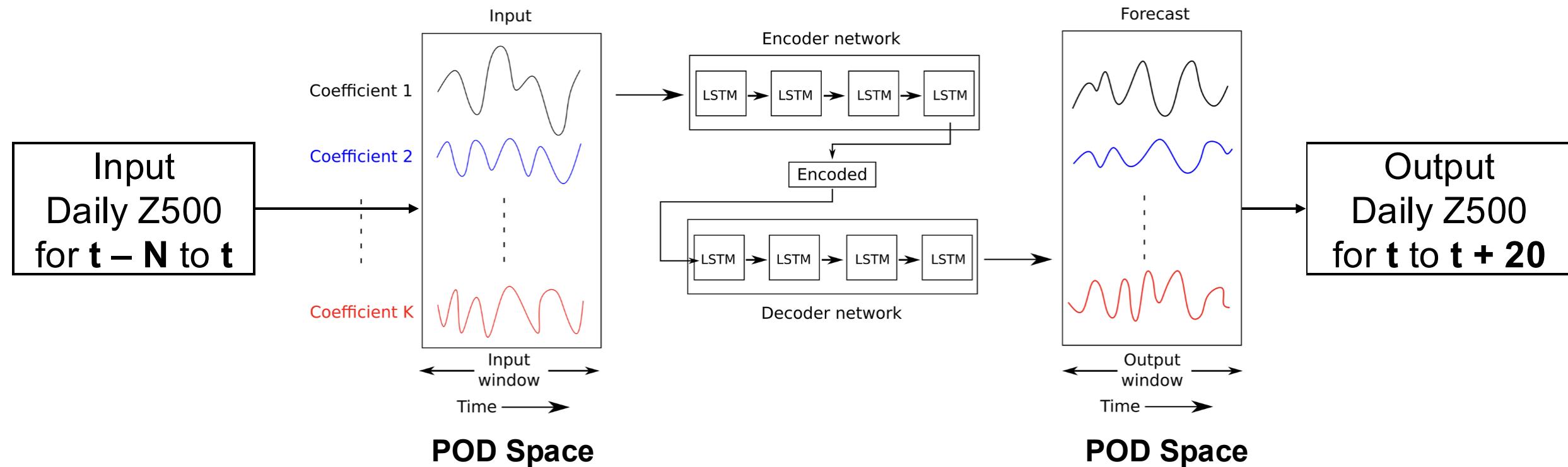
→ First to conduct “on-the-fly” 4D-Var with an emulator + auto-differentiated adjoint

Experimental Set-Up

- Training Data
 - WRF simulations driven by NCEP-2 Re-analyses
 - Target: Daily Z500 for 20 days lead time (**long!!**)
 - Input Window: 1-4 weeks
- Domain
 - Train: 1984-1989; Test: 1991
 - 60 by 60 km grid cells over North America (102 by 119)
- “Observations”
 - Assumptions: uncorrelated observation errors, observation error standard deviation $\sim 1.5\%$ of mean
 - 5000 grid cells randomly sampled from true state as “sites”

Q: ~41% of total grid cells in each sample — is this realistic for operational DA?
- Baselines
 - Climatology
 - Persistence

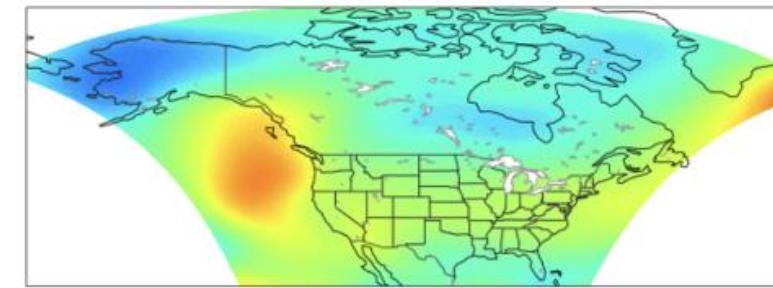
Emulator Set-Up



- 1) POD reduces size of B
- 2) LSTM is auto-differentiable → Get the adjoint for free!
 - Gradients w.r.t input are computed during back-propagation

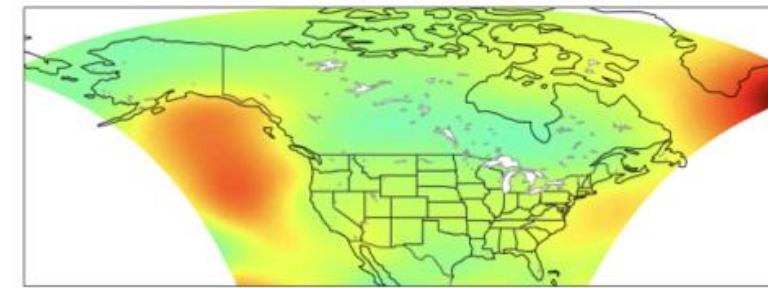
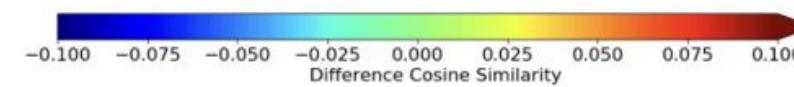
Results

Emulator-Only

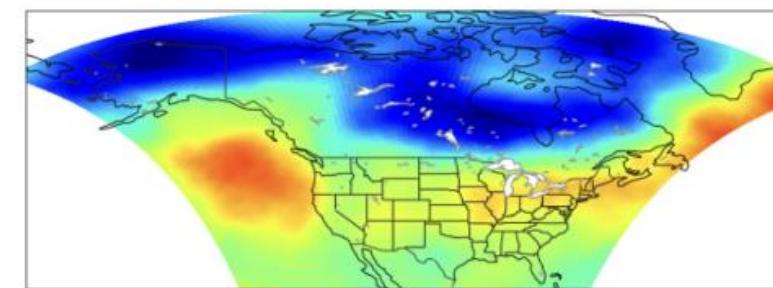
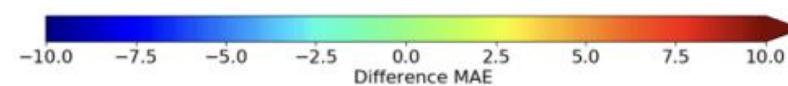


(a) Similarity improvement: Regular emulator

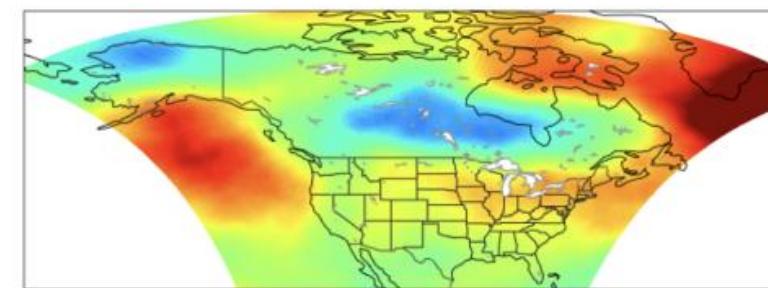
Emulator + DA



(b) Similarity improvement: Regular emulator + DA

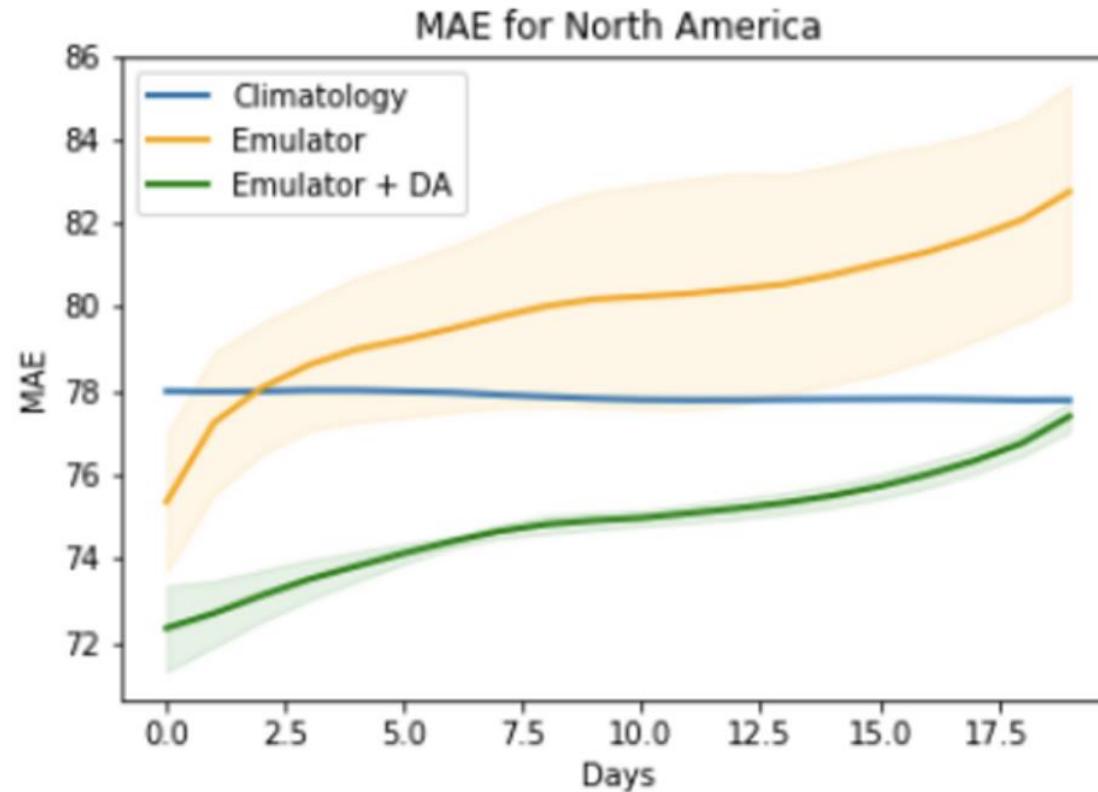


(c) MAE improvement: Regular emulator



(d) MAE improvement: Regular emulator + DA

Results



(i) North America

Speed-Up

Emulator + DA: ~1 hour

Numerical Forecast: ~172 hours

Numerical Forecast + DA: $172 \times (\sim 100)$ hours + adjoint derivation labor cost

Discussion in groups!

~~Q1: What are your main takeaways from the paper?~~

~~Q2: What additional experiments / results would you like to see presented in this work?~~

~~Q3: What are potential impacts of this work's findings for DA applications?~~

~~Q4: What additional steps or considerations might be necessary for emulator-based 4D-Var in an **operational setting**?~~

~~Q5: What questions do you have about data assimilation? Is DA relevant for your research?~~