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What is “data assimilation”?
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Given model estimates and observations, what is the most likely atmospheric state?



What is “data assimilation”?

Observations

Both model estimates and observations have errors



What is “data assimilation”?
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Analysis

1 Observations

Final analysis is determined by error-weighted contributions from observations and
model states
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* Real-time Forecasting: Optimizing initial conditions
« Ex: Operational weather forecasts @ ECMWF, Met Office, NCEP, etc.



Applications of Data Assimilation
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1 Observations

* Real-time Forecasting: Optimizing initial conditions
« Ex: Operational weather forecasts @ ECMWF, Met Office, NCEP, etc.
* Re-analyses: Re-constructing best estimate of prior atmospheric state

* Ex: ERAS for weather and climate
* Ex: CAMS for atmospheric composition



DA State-of-the-art

Ensemble Kalman Filters (EnKF)
Run a large ensemble of models to compute model error at each time-step
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DA State-of-the-art

Ensemble Kalman Filters (EnKF)
Run a large ensemble of models to compute model error at each time-step

+ Model error updated during assimilation

+ Easy to implement
— Requires 10-100s of expensive model runs

— Outputs discrete analysis trajectory
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DA State-of-the-art

Ensemble Kalman Filters (EnKF)
Run a large ensemble of models to compute model error at each time-step

4D Variational DA (4D-Var)
Determine initial model state which gives best fits to observations in assim. window*

*3D-Var collapses observations to time of IC
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DA State-of-the-art

Ensemble Kalman Filters (EnKF)
Run a large ensemble of models to compute model error at each time-step

4D Variational DA (4D-Var)
Determine initial model state which gives best fits to observations in assim. window

+ Qutputs continuous analysis trajectory which obeys model physics
— Requires backwards model gradients during optimization (expensive!)



DA State-of-the-art

Ensemble Kalman Filters (EnKF)
Run a large ensemble of models to compute model error at each time-step

4D Variational DA (4D-Var)
Determine initial model state which gives best fits to observations in assim. window

+ Qutputs continuous analysis trajectory which obeys model physics
— Requires backwards model gradients during optimization (expensive!)

** 4D-Var is SOTA, used by ECMWEF for IFS and ERAS5! **



4D-Var Cost Function

Goal: Determine the model state x, which minimizes cost function J
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4D-Var Cost Function

Goal: Determine the model state x, which minimizes cost function J
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4D-Var Cost Function

Goal: Determine the model state x, which minimizes cost function J
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(spreads model departures between
variables and across time and space)
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4D-Var Cost Function

Goal: Determine the model state x, which minimizes cost function J

(o) = 5 (x0=x0)" By (xo=x0) + 5 3 [HiCx) = y217 R [Hi ) ~ )
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4D-Var Cost Function

Goal: Determine the model state x, which minimizes cost function J
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4D-Var Cost Function

Goal: Determine the model state x, which minimizes cost function J

(o) = 5 (x0=x0)" By (xo=x0) + 5 3 [HiC) = y217 R [Hi(x) = )
—0 | I | —_)

“Observation Operator”
(interpolate + transform model
state to observation space)

H(x,)
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4D-Var Cost Function

Goal: Determine the model state x, which minimizes cost function J

1 _ 1 ¢ _
J(x0) = 5 (o =) By' (xo —xp) + 5 ) [Hi(xi) = y{1 Ry [H(xp) = y7)
- | I—
=0 Observation Error Covariance Matrix
(spreads observation departures between

variables and across time and space)
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4D-Var Cost Function

Goal: Determine the model state x, which minimizes cost function J

(o) = 5 (x0=x0)" By (xo=x0) + 5 3 [HiCx) = y217 R [Hi ) ~ )
i=0

Sum of observation errors across
assimilation window

H(x,)

Guess IC X, E
Initial IC x,, E

Hq(x4)



4D-Var Algorithm

o 1 _ 1 < 01T o 0
Minimize J(xg) = E(xg—xb)TBﬂl(xg —xb)+ EZ[H{(JC;I) —Y; ]TR;' I[Hf(xi) _yi]
i=0

-> Goal: Find x, for which dJ/dx, ~ 0

Vi =—By' (xo—xp) = ) Mb,..M! M H (x) R (y(i) - Hi(x:))

i=0 | '
Adjoint: Backwards gradients of model
state at time ¢t w.r.t model state at time t-dt



Why is 4D-Var so dang expensive?

o 1 _ 1 < 01T o 0
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@ B, is huge: If x, ~ 108, B, ~ 102
H must be computed for each new observational product

@ @ MT must be derived for each numerical model



Why is 4D-Var so dang expensive?

o 1 _ 1 < 01T o 0
Minimize J(JC(]) = E(JCU —xb)TBOI(xg —Ib) + 5 Z[Hf(xi) —Y; ]TR;' I[Hf(xi) —Y; ]
i=0

- Goal: Find x, for which dJ/dx, ~ 0

n
VJe, ==By' (xo—xb) = ) My..M. , M H] (x))R;" (y(i) — Hi(x))
i=0
@ B, is huge: If x, ~ 108, B, ~ 102

H must be constructed for each new observational product
@@ MT must be derived for each numerical model

® ® @ ~100 iterations are needed to optimize x, for each assimilation step



Maulik et al. 2022

Vi =—By' (xo—xp) = ) Mb,..M! M H (x) R (y(i) - Hi(x:))

i=0 | I
Adjoint: Backwards gradients of model
state at time ¢t w.r.t model state at time t-dt

Goal: Reduce burden of MT and B using fast emulator and dimensionality reduction

—>First to conduct “on-the-fly” 4D-Var with an emulator + auto-differentiated adjoint



Experimental Set-Up

 Training Data
« WRF simulations driven by NCEP-2 Re-analyses
 Target: Daily Z500 for 20 days lead time (long!!)
 Input Window: 1-4 weeks

 Domain
* Train: 1984-1989:; Test: 1991
« 60 by 60 km grid cells over North America (102 by 119)

* “Observations”
« Assumptions: uncorrelated observation errors, observation error standard deviation ~1.5% of mean

« 5000 grid cells randomly sampled from true state as “sites”
Q: ~41% of total grid cells in each sample — is this realistic for operational DA?
» Baselines

 Climatology
* Persistence



Emulator Set-Up
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Results

Emulator-Only
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Emulator + DA
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MAE for North America
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Speed-Up

Emulator + DA: ~1 hour
Numerical Forecast: ~172 hours
Numerical Forecast + DA: 172 x (~100) hours + adjoint derivation labor cost

12



Discussion in groups!

Q2: What additional experiments / results would you like to see presented in this work?

L ] L ] L] ’ L ] | ]
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Q4: What additional steps or considerations might be necessary for emulator-based
4D-Var in an operational setting?

Q5: What questions do you have about data assimilation? Is DA relevant for your
research?
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