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Given model estimates and observations, what is the most likely atmospheric state?
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Both model estimates and observations have errors
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Final analysis is determined by error-weighted contributions from observations and 
model states
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• Real-time Forecasting: Optimizing initial conditions
• Ex: Operational weather forecasts @ ECMWF, Met Office, NCEP, etc.
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Applications of Data Assimilation
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• Real-time Forecasting: Optimizing initial conditions
• Ex: Operational weather forecasts @ ECMWF, Met Office, NCEP, etc.

• Re-analyses: Re-constructing best estimate of prior atmospheric state
• Ex: ERA5 for weather and climate

• Ex: CAMS for atmospheric composition



Ensemble Kalman Filters (EnKF)
Run a large ensemble of models to compute model error at each time-step
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Ensemble Kalman Filters (EnKF)
Run a large ensemble of models to compute model error at each time-step

+ Model error updated during assimilation
+ Easy to implement
– Requires 10-100s of expensive model runs
– Outputs discrete analysis trajectory
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Ensemble Kalman Filters (EnKF)
Run a large ensemble of models to compute model error at each time-step

4D Variational DA (4D-Var)
Determine initial model state which gives best fits to observations in assim. window*
*3D-Var collapses observations to time of IC
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Ensemble Kalman Filters (EnKF)
Run a large ensemble of models to compute model error at each time-step

4D Variational DA (4D-Var)
Determine initial model state which gives best fits to observations in assim. window*
*3D-Var collapses observations to time of IC
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Ensemble Kalman Filters (EnKF)
Run a large ensemble of models to compute model error at each time-step

4D Variational DA (4D-Var)
Determine initial model state which gives best fits to observations in assim. window

+ Outputs continuous analysis trajectory which obeys model physics
– Requires backwards model gradients during optimization (expensive!)
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Ensemble Kalman Filters (EnKF)
Run a large ensemble of models to compute model error at each time-step

4D Variational DA (4D-Var)
Determine initial model state which gives best fits to observations in assim. window

+ Outputs continuous analysis trajectory which obeys model physics
– Requires backwards model gradients during optimization (expensive!)

** 4D-Var is SOTA, used by ECMWF for IFS and ERA5! **
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4D-Var Cost Function
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Goal: Determine the model state xa which minimizes cost function J
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4D-Var Cost Function
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4D-Var Cost Function

Model Error Covariance Matrix

(spreads model departures between 

variables and across time and space)

Initial IC xb

Guess IC x0

Goal: Determine the model state xa which minimizes cost function J
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4D-Var Cost Function
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Goal: Determine the model state xa which minimizes cost function J
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4D-Var Cost Function
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4D-Var Cost Function
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Initial IC xb
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(interpolate + transform model 

state to observation space)

Guess IC x0

Goal: Determine the model state xa which minimizes cost function J
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4D-Var Cost Function

H2(x2)

H1(x1)
Initial IC xb

Observation Error Covariance Matrix

(spreads observation departures between 

variables and across time and space)

Guess IC x0

Goal: Determine the model state xa which minimizes cost function J
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4D-Var Cost Function

Goal: Determine the model state xa which minimizes cost function J

H2(x2)

H1(x1)
Initial IC xb

Sum of observation errors across 

assimilation window

Guess IC x0
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4D-Var Algorithm

Minimize 

→ Goal: Find x0 for which dJ/dx0 ~ 0 

Adjoint: Backwards gradients of model 

state at time  t  w.r.t model state at time  t-dt
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Why is 4D-Var so dang expensive?

Minimize 

→ Goal: Find x0 for which dJ/dx0 ~ 0 

 B0 is huge: If x0 ~ 106, B0 ~ 1012

 H must be computed for each new observational product

 MT must be derived for each numerical model
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Why is 4D-Var so dang expensive?

Minimize 

→ Goal: Find x0 for which dJ/dx0 ~ 0 

 B0 is huge: If x0 ~ 106, B0 ~ 1012

 H must be constructed for each new observational product

 MT must be derived for each numerical model

   ~100 iterations are needed to optimize x0 for each assimilation step



Goal: Reduce burden of MT and B using fast emulator and dimensionality reduction

→First to conduct “on-the-fly” 4D-Var with an emulator + auto-differentiated adjoint
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Adjoint: Backwards gradients of model 

state at time  t  w.r.t model state at time  t-dt



• Training Data
• WRF simulations driven by NCEP-2 Re-analyses

• Target: Daily Z500 for 20 days lead time (long!!)

• Input Window: 1-4 weeks

• Domain
• Train: 1984-1989; Test: 1991

• 60 by 60 km grid cells over North America (102 by 119)

• “Observations”
• Assumptions: uncorrelated observation errors, observation error standard deviation ~1.5% of mean

• 5000 grid cells randomly sampled from true state as “sites”
Q: ~41% of total grid cells in each sample — is this realistic for operational DA?

• Baselines
• Climatology

• Persistence
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Experimental Set-Up
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Emulator Set-Up

Input

Daily Z500

for t – N to t

Output

Daily Z500

for t to t + 20

POD Space POD Space 

1) POD reduces size of B

2) LSTM is auto-differentiable → Get the adjoint for free!

• Gradients w.r.t input are computed during back-propagation
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Results

Emulator-Only Emulator + DA
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Results 
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Speed-Up 

Emulator + DA: ~1 hour

Numerical Forecast: ~172 hours

Numerical Forecast + DA: 172 x (~100) hours + adjoint derivation labor cost



Q1: What are your main takeaways from the paper?

Q2: What additional experiments / results would you like to see presented in this work?

Q3: What are potential impacts of this work’s findings for DA applications? 

Q4: What additional steps or considerations might be necessary for emulator-based 
4D-Var in an operational setting? 

Q5: What questions do you have about data assimilation? Is DA relevant for your 
research?

13

Discussion in groups!
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